	[image: image1.jpg]

	

	
	JMMC-MOD-2000-0001

	
	

	
	Revision : 1.0

	
	

	
	Date : 29/01/2004

JMMC-MOD-2000-0001

Software Functional Specifications Template

	

JMMC
<Software Package>
Software Functional Specifications
Author1 (Author@institute.com)

Institute1

Author2

Institute2

Author3

Institue3
	Author : Gérard Zins
Institute :
	Signature :

Date :

	Approved by :

Institute :
	Signature :

Date :

	Released by :
Institute :
	Signature :

Date :

	

Change Record

	REVISION
	DATE

	AUTHOR

	SECTIONS/PAGES AFFECTED

	
	REMARKS

	
	
	
	

	
	

	
	
	
	

	
	

	
	
	
	

	
	

	
	
	
	

	
	

	
	
	
	

	
	

	
	
	
	

	
	

	
	
	
	

	
	

	
	
	
	

	
	

	
	
	
	

	
	

	
	
	
	

	
	

	
	
	
	

	
	

	
	
	
	

	
	

	
	
	
	

	
	

	
	
	
	

	
	

Table of Contents
41
INTRODUCTION

41.1
Purpose

41.2
Reference Documents

41.3
Abbreviations and Acronyms

41.4
Document Conventions

52
GENERAL DESCRIPTION

52.1
Software Perspective

52.2
User Classes and Characteristics

52.3
Overview of Functional Requirements

52.4
Overview of Data Requirements

52.5
Operating Environment

52.6
General Constraints, Assumptions, Dependencies, Guidelines

62.7
Design and Implementation Constraints

62.8
User Documentation

73
REQUIREMENTS

73.1
External Interface Requirements

73.1.1
User Interfaces

73.1.2
Hardware Interfaces

73.1.3
Software Interfaces

73.1.4
Communications Interfaces

73.2
Functional Requirements

83.2.1
Template for describing functional requirements

83.2.2
through 3.2.x –

83.3
Performance Requirements

83.4
Quality Attributes

83.5
Other Requirements

83.6
Classification of Functional Requirements (Optional)

9Appendix A.
Analysis Models

10Appendix B.
Issues List

1 INTRODUCTION
The introduction of the Software Functional Specification (SFS) provides an overview of the entire SFS. It includes the purpose, scope, definitions, acronyms, abbreviations, references, and overview of the SFS.
1.1 Purpose
Specify the purpose of this SFS. The SFS fully describes the external behavior of the software identified. It also describes nonfunctional requirements, design constraints, and other factors necessary to provide a complete and comprehensive description of the requirements for the software.
1.2 Reference Documents

This subsection provides a complete list of all documents referenced elsewhere in the SFS. Identify each document by title, report number if applicable, date, and publishing organization. This information may be provided by reference to an appendix or to another document.
[1] Document number, revision, date (optional), title, author.

or

[2] Book tit le, author, publisher, year
1.3 Abbreviations and Acronyms

This subsection provides the definitions of all terms, acronyms, and abbreviations required to properly interpret the SFS. This information may be provided by reference to the project's Glossary.
TBD
To Be Defined

1.4 Document Conventions

Describe any standards or typographical conventions that were followed when writing this SRS, such as fonts or highlighting that have special significance. For example, state whether priorities for higher-level requirements are assumed to be inherited by detailed requirements, or whether every requirement statement is to have its own priority.
2 GENERAL DESCRIPTION
2.1 Software Perspective

Describe the context and origin of the product being specified in this SFS. For example, state whether this product is a follow-on member of a product family, a replacement for certain existing systems, or a new, self-contained product. If the SFS defines a component of a larger system, relate the requirements of the larger system to the functionality of this software and identify interfaces between the two. A simple diagram that shows the major components of the overall system, subsystem interconnections, and external interfaces can be helpful.
2.2 User Classes and Characteristics

Identify the various user classes that you anticipate will use this product. User classes may be differentiated based on frequency of use, subset of product functions used, technical expertise, security or privilege levels, educational level, or experience. Describe the pertinent characteristics of each user class. Certain requirements may pertain only to certain user classes. Distinguish the favoured user classes from those who are less important to satisfy.
List critical characteristics of the system's human interfaces based on the user’s characteristics.
2.3 Overview of Functional Requirements

Provide a short description of the functions to be performed by the software, i.e. what the product should do. This description must be in a form understandable to users, operators, and clients. The detailed requirements specifications are left to Section 3.2 in this document. If you number the Functional Requirements in a systematic manner, it will be easier for you to refer to them in Section 3.2 of the SRS, in the design document you will write later, and in the testing document (also to be written later). This should not be design-oriented, a common mistake.
2.4 Overview of Data Requirements

Describe data that are input or output from the product as well as any data that are stored within the system, for example in files or on disc. This section should only cover data requirements from the user's point of view.

Once again, this should not be design-oriented.
2.5 Operating Environment

Describe the environment in which the software will operate, including the hardware platform, operating system and versions, and any other software components or applications with which it must peacefully coexist.

2.6 General Constraints, Assumptions, Dependencies, Guidelines

Include factors that impose constraints on the implementation of the software product. This can include hardware limitations or requirements, the amount of memory available, response times, policies, interfaces to other application software, networks, environmental limitations, compliance with relevant standards. This section can also provide guidance in situations when there may be more than one implementation strategy.

Examples: "The product will only work with certain operating systems or a particular network environment."

"The product must be Web-based."

"The product cannot require persistent data."

2.7 Design and Implementation Constraints

Describe any items or issues that will limit the options available to the developers. These might include: corporate or regulatory policies; hardware limitations (timing requirements, memory requirements); interfaces to other applications; specific technologies, tools, and databases to be used; parallel operations; language requirements; communications protocols; security considerations; design conventions or programming standards.

2.8 User Documentation
List the user documentation components (such as user manuals, on-line help, and tutorials) that will be delivered along with the software. Identify any known user documentation delivery formats or standards.
3 REQUIREMENTS

This section of the SFS contains all software requirements to a level of detail sufficient to enable designers to design a system to satisfy those requirements, and testers to test that the system satisfies those requirements.
3.1 External Interface Requirements
3.1.1 User Interfaces
Describe the logical characteristics of each interface between the software product and the users. This may include sample screen images, any GUI standards or product family style guides that are to be followed, screen layout constraints, standard buttons and functions (e.g., help) that will appear on every screen, keyboard shortcuts, error message display standards, and so on. Define the software components for which a user interface is needed.

3.1.2 Hardware Interfaces

Describe the logical and physical characteristics of each interface between the software product and the hardware components of the system. This may include the supported device types, the nature of the data and control interactions between the software and the hardware, and communication protocols to be used.

3.1.3 Software Interfaces

Describe the connections between this software and other specific software components (name and version), including databases, operating systems, tools, libraries, and integrated commercial components. Identify the data items or messages coming into the system and going out and describe the purpose of each. Describe the services needed and the nature of communications. Refer to documents that describe detailed application programming interface protocols. Identify data that will be shared across software components. If the data sharing mechanism must be implemented in a specific way (for example, use of a global data area in a multitasking operating system), specify this as an implementation constraint.
3.1.4 Communications Interfaces

Describe the requirements associated with any communications functions required by this software, including e-mail, web browser, network server communications protocols, electronic forms, and so on. Define any pertinent message formatting. Identify any communication standards that will be used, such as FTP or HTTP. Specify any communication security or encryption issues, data transfer rates, and synchronization mechanisms.

3.2 Functional Requirements
This section describes the functional requirements of the software for those requirements that are expressed in the natural language style. For many applications, this may constitute the bulk of the SFS package and thought should be given to the organization of this section. This section is typically organized by feature, but alternative organization methods may also be appropriate; for example, organization by user or organization by subsystem.
3.2.1 Template for describing functional requirements

This lists the exact template your SFS will apply in describing each of the functional requirements that were identified in Section 2.3. For EACH functional requirement, you should have a section. Each of these sections should be at least the following:

· purpose / description
· inputs: which inputs; in what form/format will inputs arrive; from what sources input will be derived, legal domains of each input element
· processing: describes the *outcome* rather than the *implementation*; include any validity checks on the data, exact timing of each operation (if needed), how to handle unexpected or abnormal situations
· outputs: the form, shape, destination, and volume of the output; output timing; range of parameters in the output; unit measure of the output; process by which the output is stored or destroyed; process for handling error messages produced as output
3.2.2 through 3.2.x –
The description of each functional requirement, using the template defined in 3.2.1

3.3 Performance Requirements

Issues such as number of connections to the system, number of simultaneous users, response time, number of files, size of files and tables, number of transactions per interval (all defined in terms of acceptable ranges).
3.4 Quality Attributes

Specify any additional quality characteristics for the product that will be important to either the customers or the developers. Some to consider are: adaptability, availability, correctness, flexibility, interoperability, maintainability, portability, reliability, reusability, robustness, testability, and usability. Write these to be specific, quantitative, and verifiable when possible. At the least, clarify the relative preferences for various attributes, such as ease of use over ease of learning.
3.5 Other Requirements

Define any other requirements not covered elsewhere in the SFS. This might include database requirements, internationalization requirements, legal requirements, reuse objectives for the project, and so on. Add any new sections that are pertinent to the project.
3.6 Classification of Functional Requirements (Optional)
List, usually in a table, all functional requirements and order them by Type (Essential, Desirable, and Optional) or by order of appearance in the document.

	Functionality
	Type

	...
	

	...
	

Appendix A.	 Analysis Models

Optionally, include any pertinent analysis models, such as data flow diagrams, class diagrams, state-transition diagrams, or entity-relationship diagrams.
Appendix B.	 Issues List

This is a dynamic list of the open requirements issues that remain to be resolved, including TBDs, pending decisions, information that is needed, conflicts awaiting resolution, and the like.

Revision: 1.0

Page 2/10

