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Motivation for model-independent imaging
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Motivation for model-independent imaging

The need for imaging

@ Assumptions about basic geometry of an object can be very misleading

o A model with the wrong geometry can fit well even with moderate uv coverage
o The best-fit parameters are then completely bogus

@ Image reconstruction is often the only reliable way to identify the most appropriate
class of models

@ Images can be interpreted and analysed straightforwardly by colleagues who are
unfamiliar with interferometry

@ Images make your results more accessible and improve funding prospects!

Rasalhague Altair Alderamin
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Interferometric Observables

Instantaneous output of an interferometer

instantaneous output = complex visibility:

Vivis O 8) = g5 (0 £) g1 (A ) Ta(bjy 32 (1)/A)

with:
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optical delay

Projecteq 5
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Interferometric Observables

Easy case: image reconstruction ~ deconvolution

At any observed frequency, v = bj, j, (tm)/A¢, the data is given by:

2K = /};k /I\)\Z (Vk) + noise

with the transfer function (the Fourier transform of the dirty beam):

hi, = g3, (A, tm) gjn (A, tm)
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when the complex visibilities and the complex throughput are available:

image reconstruction ~ deconvolution

/I\ many missing values (very sparse data)
= other constraints (priors) than the data are required
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Interferometric Observables

The effects of turbulence

Because of the atmospheric turbulence, averaging during an exposure yields:

(Virgz O 0)m = (g7, (0 1) g (A 1) (win (A 1)) é‘u‘r{ﬁgé?fha"eiﬁlfji’f'"g
~ (g A ) (972 (N ) In(bjy o um /)
~0 ~0
. def h b li duri
with: by, jo.m = (Pjo (£))m — (i1 (1)) m Eh: g(iir‘surise ine during

= we need to integrate observables which are insensitive to phase delay errors:

© powerspectrum

(I Vit g2 (A t)|2>m =~ (|lgn (A t)|2>m <|g]'2 (A t)|2>m |/I\)\(bj1,j2,m/)‘) |2
>0

o bispectrum

(Vingz (A 1) Viags (0 8) Vig s (A 8) i & (g5 A D)) (93 O ) m (1955 s D))o
>0
In(bjy jom/A) In(bjy jg,m /A) In(bj g .m /)
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Interferometric Observables

Issues in image reconstruction from optical interferometry data

@ sparsity of the data 2f
(holes in the spatial frequency coverage »)
= additional prior needed

@ non-linear data

North direction [M2]

powerspectrum o |/]\)\(I/k) |?

~

bispectrum X /I\A(Vkl) A(I/]Q) /]\; (Vk1 + ng)

West direction [MA]

calibration of the effective transfer functions
missing Fourier phases

© 0

e powerspectrum provides no phase
o phase closure (the phase of the bispectrum)
only provide 1 phase out of 3
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Inverse Approach

Inverse approach for image reconstruction

Inverse approach provides a very general framework to describe most (if not all) image
reconstruction algorithms (le Besnerais et al. 2008; Thiébaut 2009; Thiébaut and
Giovannelli 2010).

The recipes involve:
@ a direct model: model of the brightness distribution and its Fourier transform;

@ a criterion to determine a unique and stable solution;

© an optimization strategy to find the solution.
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Inverse Approach

Image and complex visibilities models

Image model

The specific brightness distribution in angular direction « is approximated by:
L) ~ Z bn () zn, AL 7,\(11) = Z /I;n(l/) a

with {b, : R? — R}, a basis of functions and 2 € R" the image parameters.

Complex visibility model

For any sampled spatial frequency v = bj, j,.m/A the model complex visibility can be
written:

/I\)\(Vk) ST — ann(uk) Ty = Zn Hynzn

with Hj », = b,(vg), in matrix notation:

y=H -z

with y € C¥ and H € CX*¥ is a sub-sampled Fourier transform operator.

E. Thiébaut & J. Young (CRAL & UCAM) Image Reconstruction in Interferometry Barcelonnette, September 12-13 2013



Inverse Approach

Image constraints

Image reconstruction is a compromise between various constraints (Thiébaut 2009).

Data constraints

The image must be compatible with the data z (powerspectrum, bispectrum, etc.):
faata(H-z) & logpdf(z|H-z) + ¢ <7

with pdf(z|H-z) the likelihood of the data given the model and 7 > 0.

A Even with 1 = 0, this is insufficient to define a unique (and stable) solution, we need

additional a priori constraints:

Loose priors

e.g. the image must be non-negative e.g. the image must be simple or
and normalized smooth

min forior ()

zeX

Vn,x, >0 and Z ap = 1l

<— z€X (the feasible set)
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Inverse Approach

Inverse problem formulation

We want to follow the priors as far as possible providing the image remains compatible
with the data:

T = argmin fior(€) st fraw(H-z) <7
zeX

which can be solved via the Lagrangian:
L(2;£) = forior(®) + £ faara(H - )

with £ > 0 the Lagrange multiplier for the inequality constraint fy.a(H - 2) < 1. The
inequality constraint must be active, hence £ > 0 and, taking u = 1/¢, leads to the
solution:

Maximum a posteriori solution

o(u) = argmin f(; )
zeX

with:  f(x; 1) = faata(H - ) + 1 forior ()
—_——— ~——

likelihood regularization

where g1 > 0 is tuned so as to match fyea(H - ) = n with 7 = (™) and u™" the
optimal regularization weight.

E. Thiébaut & J. Young (CRAL & UCAM) Image Reconstruction in Interferometry Barcelonnette, September 12-13 2013 14 / 63



Likelihood of the Data

Likelihood of the Data
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Likelihood of the Data

Likelihood of the data

@ should be based on the noise statistics of the data:
fraa(H-) £ —log pdf(z|H-z) + ¢

@ can be very complicated (non-convex, phase wrapping, etc.)
@ various approximations have been proposed (e.g., Meimon et al. 2005a)

& in general this does not amounts to least-squares (even weighted ones!)

al complex data Approximate cost function

) Im
low‘SNR | high SNR e

N \/e// true criterion
global convex
approximation
local convex
approximation

triple product of FKV0509;
Source : C. Hummel et al. <http://www.mrao.cam.ac.uk/~jsy1001/exchange/complex/complex.html> Re
w
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Regularization

Regularization
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Regularization

Which are the best regularization methods?

Practical comparison of regularization methods:

@ a study made by S. Renard et al. (Astron. & Astrophys., 2011);

@ about 20 000 simulations:
10 different objects;
11 different regularizations;
20 regularization levels;
3 different (u, v) coverages: poor (31 freq.), medium (88 freq.), and rich (245
freq.);

o 3 different signal-to-noise ratii (SNR): high (1%), medium (5%), and low
(10%);

@ assumptions: complex visibilities available

—> convex constrained non-linear optimization problem;

@ algorithm: MIiRA (Thiébaut, 2008, 2009);
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Regularization
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Regularization

Various regularizations

We consider the following regularizations:

1.

2-3.

Quadratic smoothness:
Joior(@) = & — S - 2|

where S is a smoothing operator (by finite differences).

Compactness (le Besnerais et al. 2008):
fprior(flf) = Z wzriorwi

with wf™ = |@,,||° and 3 = 2 or 3 yields spectral smoothness.

. Non-linear smoothness:

Jorior(x) = Zn V ||V5En||2 +e?

where ||Vz,||? is the squared magnitude of the spatial gradient in the image at nth
pixel and € — 0 yields total variation (Rudin et al. 1992) while ¢ > 0 yields
edge-preserving smoothness (Charbonnier et al. 1997).
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Regularization

Various regularizations (continued)

6-8. Separable norms (£,):

Jorior(Z) = Z (:cﬁ + 62)p/2 ~ Z |n|?

where € > 0 and p = 1.5, 2, and 3. Note that p = 1 is what is advocated in
compress sensing (Donoho 2006) while p = 2 corresponds to regular Tikhonov
regularization.

9-11. Maximum entropy methods (Narayan and Nityananda 1986):

oor(®) = = Y hlani Bn).

Here the prior is to assume that the image is drawn toward a prior model =
according to a non quadratic potential h, called the entropy:

MEM-sqrt: h(z;7) = Vx;

MEM-log: h(z; ) = log(z) ;

MEM-prior:  h(z;Z) =z — Z — z log (z/%) .
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Regularization

Tuning the regularization level

We choose the regularization level 4 by minimizing the mean squared error (MSE) of
the reconstruction versus the true image:

put = argmin Hw(u) — e )
n>0
where
z(n) = arg min {faata(H - @) + 12 forior (z) }
zeX
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Regularization

Is the MSE™ a good figure of merit?

For a given object, MSE™ is the MSE
divided by the best MSE achieved for that
object.

The distribution of MSE™ has 2 spikes
corresponding to good and bad
reconstructions.
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50 o
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Regularization

And the winner is...

Cumulative Performance Rank Image Reconstructions
peaky objects smooth objects 4 Tikhonov (2 MEM (log)
/ 0.0004 000105
_ » _ 0.000%
¢ B 0.00040
v B 10 v B 10 50 0 = 50 0 TR
n rk ot o (nas) e e
allobjects Total Variation son compactness (B = 2)
€ =conpect. 07 . 000078 .
H 000067 ] 00007
2 0.00033 2
o 0 8 0 0 S = 50 0 S0
ok ot anes) e )

Based on cumulative rank, TV and compactness are the most successful.

However the best prior depends on the particular case (object type, SNR and coverage).
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Optimization Strategy
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Optimization Strategy

Image reconstruction = optimization problem

Assuming p = 1, image reconstruction amounts to solve:

Ianl?I{l {fprior(éli) + fdata(H : :1,')}
f(z)

For optical interferometric data, the joint criterion f(x) is:

@ highly non-linear (means non-quadratic);
@ depending on a very large number of parameters (the image pixels);

@ multimodal = in principle, needs global optimization or a good starting point
followed by continuous optimization;

Proposed methods:

@ matching-pursuit: CLEAN (Fomalont 1973; Hégbom 1974), the building-blocks
method (Hofmann and Weigelt 1993)

o self-calibration: Wisard (Meimon et al. 2005b);
o direct optimization: BSMEM (Baron and Young 2008), MiRA (Thiébaut 2008);
o global optimization: MACIM (Markov Chain Imager, Ireland et al. 2008);

E. Thiébaut & J. Young (CRAL & UCAM) Image Reconstruction in Interferometry Barcelonnette, September 12-13 2013

26 /



Optimization Strategy

Self-calibration

Self-calibration (Readhead and Wilkinson 1978; Schwab 1980; Cornwell and Wilkinson
1981) proposed to solve for missing calibration of the transfer function or missing Fourier
phases.

Self-calibration algorithm

Choose an initial image 2% and repeat the following steps for k =0, 1, ... until
convergence:

© self-calibration step:

Yy = arg min fyaa(y) st. y~H- zM

Yy
@ image reconstruction step (deconvolution):

" = argmin frior(z) st. H-z~ gyl

zeX

Issues:
@ What is the meaning of = (depends on the algorithm)?
@ How to consistently tune the balance between prior and data?

@ Not rigorously equivalent to minimizing a given criterion.
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Optimization Strategy

Augmented Lagrangian approach

Solving the image reconstruction problem by direct minimization of the criterion, i.e.
min {fprior(m) + fdata(H . :13)}
zeX

is exactly the same as solving the constrained problem:

min {forior(2) + faata(y)} st. H-z =y

zeX,y

where the model complex visibilities y = H -  have been explicitly introduced as
auxiliary variables.

The augmented Lagrangian (Boyd et al. 2010) is a practical algorithm to solve this

constrained problem:

LA, 9,3 5) = i () + fooa(y) — u" [ — ] + 5 [F 2 — g

with u the Lagrange multipliers related to the constraints H- x = y and 5 > 0 the
weight of the quadratic penalty to reinforce the constraints.

Advantages: explicit update formula for the Lagrange multipliers, strong convergence
properties for 3 large enough (no need for 8 — ), etc.
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Optimization Strategy

Augmented Lagrangian approach (continued)

LA, 4,45 ) = f(2) + o (0) — w" - [ y] + 5 [F - — g

Augmented Lagrangian algorithm (in our case)

Start with initial multipliers u!® and B > 0 and repeat the following steps for
k=0,1,... until convergence:

© improve the variables:

{e, y}"*) ~ argmin La (w, y, ul; g19)

zeX,y
@ update the multipliers: or strengthen the constraints:
ulft = yf 4 5 (y[k-H] —H. w[k+1]) w1 — g H
ﬂ[k"’l] — /B[k] 5[k+1] — ,y/g[k] (with v > 1)

Step 1 can be implemented thanks to alternating minimization, e.g.:

" = argmin La(x, y, u; 3) followed by y = argmin La(z™", y, u; 8)

zeX Y
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Optimization Strategy

Image reconstruction step in augmented Lagrangian approach

The augmented Lagrangian can be rewritten as:

LA, 9,43 ) = () + fooa(y) — w" - [0 = ] + 5 [F 2 — g

1
= oo @) + fons(9) + 2 [ H- @~y — /B — L .
2 23
Improving x given the other variables writes:
T = argmin La(x, y, u; 8)
zeX
= argmin {fprior(:c) + g |IH -z — v\|2} with v=y+u/3.
zeX

which is the analogous of image reconstruction given pseudo-complex visibilities
v = y + u/B with white noise of variance x B2 (unlike self-calibration which would
try to fit y).

E. Thiébaut & J. Young (CRAL & UCAM) Image Reconstruction in Interferometry Barcelonnette, September 12-13 2013 30 /63



Optimization Strategy

Calibration step in augmented Lagrangian approach

Recalling that the augmented Lagrangian can be rewritten as:

£0(@,9.035) = fo (@) + Faa () + 5 [H- 2= 3= /B = 5 [l
improving y given the other variables writes:
yt = arg min La(z, y, u; )
Yy
= argmin { fo(v) + 5 ly — wl*}  with w=H 2w/,
Yy

which is similar to the self-calibration step in self-calibration methods except that the
complex visibilities y are enforced to fit the actual data and the shifted model complex
visibilities w = H -z — u/f and not just H - x.
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Optimization Strategy

Conclusions about optimization strategy

e direct optimization is more consistent (the given criterion is minimized) and much
faster and stable than self-calibration for finding missing Fourier phases (as in
Wisard, Meimon et al. 2005b) or missing parameters in the OTF:

e imposing u = 0 for the Lagrange multipliers yields the same method as
self-calibration;

o exactly matching H - ¢ = y requires 8 — oo which worsens the condition
number of the problem and, thus slows down convergence;

o direct optimization is more consistent (the given criterion is minimized) and
much faster and stable;

o direct optimization with {1 regularization (to impose sparsity) is superior to
matching pursuit (Marsh and Richardson 1987) for imposing the sparsity in the
CLEAN (Fomalont 1973; Hégbom 1974) and building-blocks (Hofmann and Weigelt
1993) methods;

@ the most successful algorithms — e.g. BSMEM (Baron and Young 2008) and MiRA
(Thiébaut 2008) — use direct optimization;

& global optimization is however required, e.g. attempt by the Markov Chain Imager
(MACIM) algorithm (Ireland et al. 2008);
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Optimization Strategy

Example of Image Reconstruction

bbb

relative 3 (millarcseconds)

v-spatial requency (Mega-cyclesiradian)

.
£

true object u-v coverage
(smoothed)

@ simulated data for Beauty Contest 2004 (Lawson et al. 2004)
@ reconstruction by MiRA algorithm (Thiébaut, 2008)

x = argmin fyaa(H - ) + 1t forior ()
zeX

constrained non-linear optimization by limited memory quasi-Newton method
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Optimization Strategy

Example of Image Reconstruction

bbb

relative & (millarcseconds)
relaive & (miliarcseconds)

v-spatial requency (Mega-cyclesiradian)

.
£

relative a (millarcseconds) u-spatial frequency (Vega-cycles/radian) relative a (miliarcseconds)

true object u-v coverage reconstruction with
(smoothed) powerspectrum and

phase closures
@ simulated data for Beauty Contest 2004 (Lawson et al. 2004)
@ reconstruction by MiRA algorithm (Thiébaut, 2008)

x = argmin fyaa(H - ) + pt forior ()
zeX

constrained non-linear optimization by limited memory quasi-Newton method
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Example of Ima

relative 3 (millarcseconds)

129004
116004
10304
9016

.75

“6.440-05
4515005

“a860-05

<2505

e o s
true object
(smoothed)

Optimization Strategy

Reconstruction

v-spatial frequency (Mega-cyclesiradian)
relaive & (miliarcseconds)
relative & (miliarcseconds)

£

u-v coverage reconstruction with reconstruction with
powerspectrum and powerspectrum only

phase closures

@ simulated data for Beauty Contest 2004 (Lawson et al. 2004)
@ reconstruction by MiRA algorithm (Thiébaut, 2008)

x = argmin fyara(H - ) + 1t forior ()
zeX

constrained non-linear optimization by limited memory quasi-Newton method

ébaut & J. Young (CRAL
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Existing Algorithms

Existing Algorithms
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Existing Algorithms

Algorithm Ingredients

Supported data types and corresponding likelihood functions
Image model and method for forward transform to data space (= direct model)

Strict constraints (positivity and normalization of image)
Prior (regularization) type and level

o Possible prior model
Algorithm for solving the inverse problem

o How the inverse problem is expressed
o Numerical algorithm used to solve it
o Starting model
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Existing Algorithms

Algorithm Comparison

Name Authors Optimization Regularization
BSMEM Baron, Buscher Trust region gradient MEM-prior
MiRA Thiébaut VMLM-B Many
. . _ (%)
WISARD Meimon, I\/!ugnler, VMLM. B ' plus Many
Le Besnerais self-calibration
MACIM Ireland, Monnier Simulated annealing MEM

Baron, Monnier,

SQUEEZE Kloppenborg Parallel tempering
Building Block . . . .
method Hofmann, Weigelt = Matching pursuit Sparsity

() VMLM-B is a quasi-Newton method with bounds on the parameters (Thiébaut 2002)
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Existing Algorithms

Points of difference

@ Image model
o Conventional grid of pixels
o Sparsity basis (compressed sensing) — work in progress
o Fourier transform implementation (handling of uneven Fourier sampling)
@ Treatment of the observables
o Explicit solving for phases (WISARD)
o Direct use of Ol observables (e.g. MiRA, BSMEM), locally convex likelihood
o Noise model for complex quantities (c.f. OIFITS standard)

Bayesian/non-Bayesian algorithm
e Stopping criterion
o Treatment of hyperparameter
o Evidence evaluated?

Global or gradient optimization

o Gradient optimization needs differentiable regularizer
o Global optimization by Markov Chain Monte-Carlo techniques

Available regularizers

User interface

Availability of the code, documentation and support
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Existing Algorithms
Results

Dt {Model: Contour Pt _Datal Model: Greyscale Plot

ne

@ Despite algorithm differences, usually get
very similar results!

o Note importance of strict constraints
(MiRA image was reconstructed without
normalization)

o For this dataset

o All algorithms recover the correct

morphology

o All get the astrometry and photometry
wrong. . .

E. Thiébaut & J. Young (CRAL & UCAM) Image Reconstruction in Interferometry Barcelonnette, September 1213 2013 38 / 63



Are there sufficient data for image reconstruction?

Are there sufficient data for

image reconstruction?
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Are there sufficient data for image reconstruction?

Enough data?

@ The number of independent uv points > number of filled resolution elements in the
recovered image

o Don't bother trying with < 20 data

@ The range of interferometer baselines i.e. Bmax/Bmin Will govern the range of spatial
scales in the image

o Need two-dimensional uv coverage
o Shortest baseline should be well inside the first lobe of the visibility function

@ Holes in the uv coverage will give artefacts in the image
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Are there sufficient data for image reconstruction?

Fraction of phase information

(NN -1(N —2)

No. of C.P. =
(3)(2) 4
No. of indep. C.P. = W 1
No. of Phases = w
2 n

) o

o 3 telescopes = 1/3 phase information; D (1-2:3) = D (1-2+4) + D (4-2:3) + D (1-4-3)

8 telescopes == 75% phase information In General:
@ Impact on reconstruction depends on object @ (1-2-3) = @ (1-2-n) + D (n-2-3) + D (1-n-3)

morphology — e.g. missing phases have little
impact for symmetric objects
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Image Reconstruction Parameters

Image Reconstruction

Parameters
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Image Reconstruction Parameters

Recap of Parameters

OIFITS file
Data selection parameters: observing target, wavelength and time ranges

Image model

Regularization type and parameters
o May include a prior model (required by MEM-prior)
o Hyperparameter p (relative weighting of likelihood and prior, may be determined
automatically)
@ Optimization parameters

e Starting model
o Positivity and normalization constraints usually applied by default
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Image Reconstruction Parameters Choosing the parameters

Choosing Image Model Parameters

Usually specify the image dimensions (e.g. 128 x 128) and pixel scale (e.g.

0.1 mas/pixel)

@ These should reflect the range of spatial frequencies in the data and the maximum
size of the object

o Pixel size 0.1-0.2 Amin/Bmax — algorithms can give super-resolution beyond A/B

o Degree of super-resolution depends on noise level and uv coverage of data

Image width 2 2-3 X object size, to avoid aliasing
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Image Reconstruction Parameters Choosing the parameters

Choosing the Regularization

@ Total variation and compactness are the most successful over a wide range of
objects (Renard et al. 2011)

o MiRA supports a wide range of priors, including user-defined ones, whereas BSMEM
only supports MEM-prior

@ Regularization terms can, in principle, be calculated with respect to a prior model
(default model) — required for MEM-prior
o Non-flat prior model fixes the position of the object, which is unconstrained if only
amplitude/closure phase data
o Otherwise starting model can be used to enforce the object position (MiRA)
o Informative prior models can be especially useful for sparse and/or noisy data;
otherwise they just speed up convergence

@ Hyperparameter o controls the relative weighting of the likelihood and prior

o Can be determined objectively by evaluating the Bayesian evidence — BSMEM does this
o Table of empirical values in Renard et al. (2011)
o Can try a range of values and select the one that gives fyata ~ m
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Example Image Reconstruction Sessions

Example Image Reconstruction

Sessions

E. Thiébaut & J. Young (CRAL & UCAM) Image Reconstruction in Interferometry Barcelonnette, September 12-13 2013 46 / 63



Example Image Reconstruction Sessions BSMEM

BSMEM

OO ® jsylo01@cstdev: ~

jsyle0il@cstdev:~S
jsyleoil@cstdev:~S bsmem -h

kkkk*kX*X*%  BSMEM V1.5 B ]

Usage: bsmem -d OIFITSfile [-f outputimagefile -p pixellation -w imagewidth ...]

: './bsmem -d data.oifits -p 0.1 -w 128’

Display this information.
OIFITS file containing the visibility data.
FITS file to output the reconstructed image.
Starting image or prior file. Overrides the -mt command.
Model/prior image type.

5] Flat prior.

1 : Dirac, centered in the Fov.

2 : uniform disk.

3 : Gaussian.

4 Lorentzian.
Model witdth (Gaussian and Uniform Disk only).
Total flux of the model.
Size of a pixel (in mas). Set to @ for automatic.
Width (in pixels) of the reconstructed image.
Entropy functional.
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Example Image Reconstruction Sessions BSMEM

Useful BSMEM Options

Specify data file: -d data.oifits

Override default image size and automatic pixel scale: -w 128 -p 0.2
Specify model (used as prior model and starting model):

e e.g. 20 mas radius Uniform disk: -mt 2 -mw 20.0
o e.g. 30 mas FWHM Gaussian: -mt 3 -mw 30.0

@ Alternative — specify model image file: -sf model.fits
o Image dimensions and pixel scale must match BSMEM options

@ Perhaps adjust error on zero-baseline powerspectrum point: -ferr 1e-3

o If extra iterations needed: -it 400 or -it -1 (unlimited)

o If scripting BSMEM disable command prompt, specify wavelengths and (optionally)
output file: -noui -wavmin 1680.0 -wavmax 1720.0 -f out.fits

@ Alternative — redirect commands from file to stdin:

bsmem -d data.fits < bsmem.in
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Example Image Reconstruction Sessions BSMEM

Starting BSMEM (i)

@@ jsyl001@cstdev: ~/Dropbox/STORE/Simulations/OI_Imaging/VLTI_School_2013
kkkkkkkkk% BSMEM v1.5 dkkkhkkkkkhhkkkkkk

Datafile: RSG_distX7_H_MRO8bs_D_sy123.oifits

Reading unit labels: OI_TARGET OI_WAVELENGTH OI_VIS2 OI_VIS2 OI_VIS2 0I_T3 OI
_T3 01_T3

Target id/name: 1/Fake_Targ

lAuto selecting the only target "Fake Targ".

POWERSPECTRUM TABLES
# Date Array Instrument

\
001 2009-08-06 Fake_Ins

002 2009-08-06 Fake_Ins
003 2009-08-06 Fake_Ins

BISPECTRUM TABLES
Date Instrument

2009-04-15 Fake_Ins
2009-04-15 Fake_Ins
2009-04-15 Fake_Ins

INSTRUMENT SPECTRAL CHANNELS
# Instrument Channel_id Band/Bandwidth (nm)
[ Fake_Ins 000_000 15408/55
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Example Image Reconstruction Sessions BSMEM

Starting BSMEM (ii)

jsy1001@cstdev: ~/Dropbox/STORE/SimulationsfOI_Imaging/VLTI_School_2013

085_002 1650/55
085_003 1705/55
005_004 176055
Select a wavelength range (default value = 1 50000) :1640 1660
Found 855 powerspectrum and 570 bispectrum points between 1640 and 1660 nm.

Bispectrum noise: Classic elliptic approximation
UV range: 25022904 - 161907664 wavelengths
IArray resolution: 0.636983 mas

Pixel size: Automatic, ©.212328 mas
Recommended size: 64 pixels

Image width: 128 pixels, 27.177935 mas
Pix/fastest fringe: 6.000000

Entropy functional: Gull-skilling entropy
Hyperparameter scheme: Chi2z = N method

Maximum n# iterations: 200

Gaussian, FWHM:10.000000 mas, sigma:4.246609 mas, flux:0.010000

Starting Maximum Entropy Reconstruction.
Iteration 1 Ntrans === 4 istat === 0101000
= 0.000000 Chisq = 1926.560181 Flux === 0.0810000 Alpha =
©0.000519
0.000000 Good Measurements === 0.800008 Scale === 1.000000
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Example Image Reconstruction Sessions BSMEM

Useful BSMEM Commands

Commands are not case sensitive.

EXIT

DO n Iterate (DO -1 to convergence)
SCALE x Set image display exponent
REDISP ON / REDISP OFF Enable/disable image and graphs
CENTER Re-centre image

SNR Display signal-to-noise

uv Plot uv-plane coverage
WRITEFITS Save reconstructed image
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Example Image Reconstruction Sessions BSMEM

BSMEM Graphs

¥ m - 1250 £ jomnvoung &

PGPLOT Window 1
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Example Image Reconstruction Sessions MiRA

Simple MiRA session

0. Start MiRA: launch Yorick and
include, "mira.i";

1. Load input data into opaque object db:
db = mira_new("data/beauty-2004-datal.oifits");

2. Configure for image reconstruction:
mira_config, db, xform="nfft", dim=150,
pixelsize=0.1*MIRA_MILLIARCSECOND;

3. Choose a regularization method:
rgl = rgl_new("smoothness");

4. Attempt an image reconstruction (from scratch):
dim = mira_get_dim(db);
img0 = array(double, dim, dim);
img0(dim/2, dim/2) = 1.0;
imgl = mira_solve(db, img0, maxeval=500, verb=1, xmin=0.0,
normalization=1, regul=rgl, mu=1e6);
5. Continue reconstruction with recentered image:
imgl = mira_solve(db, mira_recenter(imgl), maxeval=500,
verb=1, xmin=0.0, normalization=1, regul=rgl, mu=1e6);

E. Thiébaut & J. Young (CRAL & UCAM) Image Reconstruction in Interferometry Barcelonnette, September 12-13 2013 53/



Example Image Reconstruction Sessions

Useful MiRA options

Useful options of mira_solve:

xmin=0.0 to enforce positivity

@ normalization=1 to enforce normalization

@ regul=..., mu=... to specify regularization type and level
@ verb=n verbose every n iteration / quiet with verb=0
°

maxeval=... to set maximum number of evaluations
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Example Image Reconstruction Sessions MiRA

MiRA session with another regularization

Start Mira
Load input data into opaque object db
Configure for image reconstruction

Choose a regularization method:

dim = mira_get_dim(db);

img0 = array(double, dim, dim);

img0(dim/2, dim/2) = 1.0;

rgl = rgl_new("totvar", epsilon=le-4, isotropic=1);

Attempt an image reconstruction (from scratch):

imgl = mira_solve(db, imgO, maxeval=500, verb=1,
xmin=0.0, normalization=1, regul=rgl, mu=1e6);

Change a regularisation parameter and continue reconstruction with recentered
image:
rgl_config, rgl, epsilon=le-3;
imgl = mira_solve(db, mira_recenter(imgl), maxeval=500,
verb=1, xmin=0.0, normalization=1,
regul=rgl, mu=1le4);
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Interpretation of reconstructed images

Interpretation of reconstructed

Images
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Interpretation of reconstructed images

Can we improve the reconstruction?

Adjust the size of the support to the reconstructed object
o Map size
o Width of prior model

@ Use the reconstructed object to inform the choice of prior/starting model

o Beneficial at intermediate SNR or if uv coverage poor
o Can use initial reconstruction, thresholded and smoothed, as model for second run

@ Re-center the object part-way through the reconstruction

Experiment with selected wavelength range

o Trade improved uv coverage against intrinsic variation of object with wavelength
Experiment with selected timespan

e Trade improved uv coverage against intrinsic variation of object with time
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Interpretation of reconstructed images

Effect of uv coverage

All simulations are of 6 hour observations
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Interpretation of reconstructed images

Effect of signal-to-noise
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Interpretation of reconstructed images

What features are believable?

Usually difficult to identify a “noise level” in the reconstructed image, due to
regularization and artefects of sparse uv coverage.
Instead we must consider:
@ Are features robust to changing reconstruction parameters?
o Compare reconstructions from independent subsets of the data
o Split by time or wavelength
@ Follow up model fitting

@ Image reconstruction from multiple realisations of simulated data
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Summary and perspectives

Summary and perspectives
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Summary and perspectives

Summary and perspectives

o general inverse problem framework suitable to describe most methods;
@ optimization
o difficulties: non-linearity, lots of variables (as many as pixels), constraints
(non-negativity), etc.
o direct optimization of the criterion is more consistent and probably more efficient
o global optimization is required
@ a priori constraints:
o regularization: TV and compactness appear to be the most effective (¢2 — ¢1 probably
a better compromise for astronomical images)
o the future: multi-spectral data
e spectral regularization (Soulez et al. 2008)
o much more parameters to fit, computational cost will be a big issue

(le Bouquin et al. 2009)
o other links: medical tomography, compressive sensing, etc.
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Summary and perspectives
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