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Theory of stellar oscillations

I Asymptotic expression for stellar oscillations

I Large and small frequency separations

I CD diagram

I Frequency of maximum amplitude

I Relation between seismic quantities and ρ and g

I Determining M, R, and age from scaling relations

I Observations of solar-like oscillations

I Combining interfer + astero: precision in M
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Observations of oscillations: Our closest solar-like stars
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Space-based observations of giants: Kepler V > 9
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Observations of solar-like oscillations
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Observations of solar-like oscillations
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Approximation for stellar oscillations

I Describing oscillations in stars can be simplified if we consider
the asymtotic approximation, i.e. `/n− > 0.

I A second order approximation is given by the following

νn,l = ∆ν0

(
n +

`

2
+ ε

)
−∆ν2

0

(
A[`(`+ 1)]− B

νn,`

)

where ∆ν0 =
(

2
∫ R

0
dr
c

)−1

I R = stellar radius, νn,l is a frequency ν of radial order n and
degree `, and c is the sound speed

I ε depends on boundary conditions (e.g. surface) and B
depends on surface conditions.

Orlagh Creevey Stellar Oscillations



Theory of stellar oscillations

Large frequency separation ∆ν

Considering just the first term of the RHS: νn,l = ∆ν0

(
n + `

2 + ε
)

I For a given degree `, e.g. ` = 0, νn,l and νn+1,l will be
separated by ∆ν0 (×1 + 0 + ε ∼ 1)

I νn,0 and νn,1 will be separated by approx. ∆ν/2

I The first term also implies that νn,0 = νn−1,2

I If we define the large frequency separation as

∆νn,l = νn,l − νn−1,l

then we have that ∆νn,l ∼ ∆ν0 ∼ 〈∆ν〉
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Observations of solar-like oscillations: ∆ν

Orlagh Creevey Stellar Oscillations
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Large frequency separation ∆ν

I ∆ν0 is defined as
(

2
∫ R

0
dr
c

)−1
, which is the inverse of the

time it takes for a sound wave to travel through the star

I We can equate this with ∆ν0 = c
2R

I The speed of sound through a star can be written as c2 = dP
dρ

and in an isothermal gas we have P = ργ where γ is the
adiabatic exponent, so c2 = γP

ρ

I We also have GM2

R = 3M kT
µ and the IGL states P

ρ = kT
µ

I By combining these equations and substituting for the sound

speed we get c
2R ∝

√
M
R3

I Thus we have
∆νn,l ∝

√
ρ
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Large frequency separation ∆ν

I From the asymptotic approximation we have

∆ν0 =

(
2

∫ R

0

dr

c

)−1

I Or in other words:

∆νn,l ∼ 〈∆ν〉 ∝
√
ρ

I By scaling with the solar values we have a scaling relation

〈∆ν〉
〈∆ν〉�

'
√

ρ

ρ�
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Small frequency separations δν

νn,l = ∆ν0

(
n +

`

2
+ ε

)
−∆ν2

0

(
A[`(`+ 1)]− B

νn,`

)
I We showed by considering just the first term of the RHS of

the asymptotic relation that νn,l = νn−1,l+2, but considering
the two terms, this is no longer true

I Here A =
(
4π2∆ν0

)−1
(
c(R)
R −

∫ R
0

dc
dr

dr
r

)
I If we define the small frequency separations as
δl ,l+2(n) = νn,l − νn−1,l+2, then we have

δl ,l+2(n) ' −(4l + 6) ∆ν0
4π2νnl

∫ R
0

dc
dr

dr
r

I We can see that δn,02 is sensitive to the sound speed gradient,
and in particular where r is close to 0, i.e. in the core

I δn,02 or 〈δν〉 is sensitive to evolution state
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Observations of solar-like oscillations: δν
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CD diagram

Figure : The CD diagram2. This figure shows how the small and large
frequency separations evolve for stars of different masses as the star
burns up hydrogen in its core (main sequence).

1taken from ’Stellar Oscillations’ by J Christensen-Dalsgaard
2taken from ’Stellar Oscillations’ by J Christensen-Dalsgaard
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CD diagram not so simple

Figure : The CD diagram assuming a certain metallicity and input
physics.
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CD diagram not so simple

Figure : The CD diagram assuming a certain metallicity and input
physics.
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Observations of solar-like oscillations

Figure : Observations of solar-like oscillations.
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Observations of solar-like oscillations: νmax
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Frequency of maximum amplitude νmax

I The observed power is modulated by a Gaussian-like envelope

I The frequency of maximum power/amplitude is called νmax

and it is related to the damping and excitation mechanism,
which happens in the near surface layers of the star

I Waves near the surface are strongly influenced by the acoustic
cut-off frequency νac, and so it has been suggested that
νac ∝ νmax

I The acoustic cut-off frequency is given by
ν2

ac =
(

c
4πH

)2 (
1− 2dH

dr

)
where H = −(dlnρ/dr)−1 is the

density scale height

I An isothermal approximation gives νac = c
4πH and thus

νmax ∝
c

H
∝ gT

−1/2
eff
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Frequency of maximum amplitude νmax

I We have νmax ∝ gT
−1/2
eff

I Writing this in terms of solar values we have the following
scaling relation

νmax

νmax,�
' g

g�

√
5777

Teff
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Space-based observations of giants: CoRoT

Orlagh Creevey Stellar Oscillations



Theory of stellar oscillations

Solving for M and R

I The two scaling relations for νmax and ∆ν can be written in
terms of M and R where M and R are the stellar mass and
radius in solar units:

〈∆ν〉 '
√

M

R3
〈∆ν〉�

νmax '
M

R2Teff

√
Teff,�νmax,�

I There are two equations with two unknowns if we can
measure Teff , and so we can solve for M and R.

I Typical precisions are 4-6% for R and 10-18% for M.

I If we could measure one of them independently, very high
accuracy could be obtained on the other. Any ideas?
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Using individual frequencies, νn,l

I Even without considering the global seismic quantities 〈∆ν〉
and νmax, the oscillation frequencies themselves νn,l are of
course extremely sensitive to the mean density of the star.

I They can be measured with much higher precision and thus
the density can be determined to even higher precision than
using just the global seismic quantities.

I Interpretation of the frequencies requires also the use of stellar
models. Using the scaling relations provides a
model-independent determination.

I We can not always access the individual frequencies. As the
brightness decreases, the S/N also decreases, and in some
cases only 〈∆ν〉 and νmax can be determined.
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Combining interferometry and asteroseismology

〈∆ν〉 '
√

M

R3
〈∆ν〉�

I Considering the scaling law above, if we measure 〈∆ν〉 with
asteroseismic data, and R from interferometry, we gain access
to M (hence age).

I M is very difficult to determine for cool stars and generally
relies on the use of stellar models if the star is ’single’

I But how well we can determine these quantities depends on
several factors

I Precision in the radius
I Other available observations
I Precision in these other observations
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Precision in mass

Figure : How the uncertainty in the mass improves as the radius is
measured more precisely for a 1.0 M� model.
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