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Constraints on stellar kinematics using spectro-interferometry
Application to a Be star disk

Spectro-interferometry is a powerful technique combininghigh spectral and spatial resolution. It al-
lows not only to constrain an object geometry as “standard interferometry”, but also its kinematics by
centering observations on some narrow spectral features sensitive to the Doppler effect.

During this practical session we will focus on the case of classical Be stars observed in some emission
lines. We will analyze some VLTI/AMBER data with a simple kinematic-model developed in IDL to
probe the circumstellar environment of this class of objects.

Remember that, beyond this example, such technique can be applied to all kind of objects with absorp-
tion or emission lines in their spectra : stellar photospheres, young stellar objects, novae, interacting
binaries, and even AGNs!

1 Some useful background

1.1 Spectral lines in stellar spectrum

1.1.1 Stellar spectrum

A stellar spectrum can always be separated in two kind of features : continuum and discrete spec-
tra. The most common continuum spectra is the black-body, which is emitted by any body at a
non-zero thermodynamic equilibrium. This emission usually dominates stellar spectra. Nevertheless,
other kinds of continuum spectra can be found in specific physical conditions : free-free (also called
Bremsstrahlung), free-bound, synchrotron, or cyclotron emissions.

The most common discrete features in stellar spectrum are spectral lines. They correspond to a pho-
ton emitted or absorbed by a quantum system such as an atom or amolecule. Consequently, their
wavelengths are determined by the possible energy levels for the considered particle. Depending on
the physical conditions in the medium and the intensity of the continuum radiation on which they
formed, spectral lines can be found in absorption or emission. Absorption lines are usually formed
in stellar photospheres, whereas emission lines are often found in extended diluted medium highly
irradiated by a central source, i.e. in circumstellar environments. Note that other kinds of discrete
spectra exist, such as spectral bands which stem from the merging of many close-by spectral lines for
complex polyatomic systems. (molecular bands).

1.1.2 The hydrogen lines

During this practical session we will focus on the most abundant element in the universe : hydrogen.
The wavelength (λ) of a photon emitted by a transition between two levels of this atom is given by
the Rydberg-Ritz formula :

1
λ
= RH

(
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−
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n2

)

(1)

where RH=1.097m−1 is the Rydberg constant, n the ground level of the transition defining the serie to
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which it belongs to, and∆n, the level difference defining the position in the series. Note that both n
and∆n are strictly positive.

Question : The first six series of the hydrogen atom are named after their discoverers. Can you
name them ?

The hydrogen lines are almost always named after their series and their position in them using a
Greek letter. Xα correspond to a transition between nX and nX+1, where nX is the ground level of
the X series. Xβ corresponds to a transition between nX+2 and nX... Finally X∞ corresponds to the
theoretical limit of the series when∆n→ ∞.

Question : Gives the wavelengths of Xα and X∞ for the first six series ?

Question : Which hydrogen lines are observable with AMBER (H andK bands) ? What about
VEGA (R and I) ?

1.2 Doppler effect

1.2.1 General concept and application to electromagnetic waves

The Doppler effect is the shift in frequency of any kind of periodic event foran observer moving
relative to its source. This applies to all kind of waves and in the case of an electromagnetic wave the
shift in wavelength is given by :

δλ = −
v
c
λ0 (2)

whereλ0 is the rest wavelength, v the radial velocity between the source and the observer, andc the
speed of light in the vacuum. If the source and observer are moving away, i.e.v is negative, the wave
is red-shifted, whereas if they are coming closer the wave isblue-shifted.

Question : What would be the shift for a 2µm radiation with a radial velocity of 300 km s−1?

1.2.2 Effects on spectral lines

The Doppler shift affects both continuum and spectral lines. However, for non-relativistic radial
velocities between the source and the observer, the effect on broad continuum emission such as a
black-body is often unnoticeable as the variation of the emission intensity between the rest wave-
length and the shifted one is usually negligible. On the other hand, the effect can easily be detected
on spectral lines as their natural width are very small.

The effect of Doppler Shift on spectral lines can be divided into twotypes. The first one is a global
shift of the line wavelength due to some global radial velocity between the source and the observer.
Such velocity can be due to earth motion around the sun (i.e.,see heliocentric correction), to stellar
motion in a binary system or around the galactic center, or tocosmological redshift introduced by the
expansion of the universe.

On the other hand, a velocity distribution in the emitting medium causes a line deformation as the
different parts of the emitted light can be blue or red-shifted. This distribution, that can be either
microscopic or macroscopic, often causes a line broadening.
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The most common microscopic velocity distribution is due tothe kinetic temperature. For an ideal
gas the rms-velocity of particles is given by:

vrms =
3kT
mp

(3)

where k is the boltzman constant (k=1.38 10−23 m2 kg s−2 K−1), T the particles kinetics temperature,
and mp the mean particle mass.

The most common macroscopic effects on the velocity distribution are due to stellar rotation, turbu-
lence, and expansion in a stellar wind.

Question : Is the line broadening dominated by kinetic temperature or stellar rotation for the
sun (Teff =5700K, vrot ∼2 km −1) and for the Be starα Col (Teff =13000K, vrot ∼400 km−1) ?

1.3 Classical Be stars

Classical Be stars are hot non-supergiant stars that have at least exhibited once the so called “Be-
phenomenon”, i.e. emission lines and IR-excess in their spectra originating from a dense gaseous
circumstellar environment highly illuminated by the star.

A generally accepted scheme is the presence of two distinct regions in their environment : a dense
equatorial disk dominated by rotation and responsible for most of the line emission and IR-excess and
a more diluted radiatively driven polar wind with terminal velocities on the order of 1000km.s−1.

However, the physical process or processes responsible forthe mass-ejection and reorganization of
matter in the circumstellar environment are still highly debated. The effect of rotation, radiative pres-
sure, pulsation, and binarity have still to be quantified.

An efficient way to test the various hypothesis on the mass ejectionis to constrain both the geometry
and kinematics of their circumstellar environment. However, considering their typical extension, i.e.
a few milli-arc-seconds, this can only be done using spectro-interferometric measurements.

2 The kinematic model

2.1 Description of the model and parameters

In this practical session we will use a “toy” model simulating the emission from a geometrically thin
rotating and/or expanding equatorial disk. The model computes a serie of narrow-spectral-band im-
ages through an emission line with the considered spectral resolution. It is described in details in
Delaa et al. (2011).

In this model the emission from the star I⋆(x,y) is modeled as a uniform disk, and the envelope emis-
sion in the continuum Ic(x,y) and in the emission line Il(x,y) as two elliptical Gaussian distributions
with a flattening due to a projection effect of the geometrically thin equatorial disk, i.e.,f = 1/cos(i),
where i the the object inclination angle. The radial and azimuthal velocities in the disk are given by :

Vr = V0 + (V∞ − V0)
(

1−
R⋆
r

)γ

(4)
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Vφ = Vrot

(

r
R⋆

)β

. (5)

From these two velocity distributions a projected velocitymap along the line of sight is computed
using the following projection formula:

Vpro j(x, y) =
(

Vφ sinφ − Vr cosφ
)

sin i (6)

For each spectral channel considered in the line, an iso-velocity map projected along the line of sight
is then calculated and multiplied by the whole emission map in the line. Finally, the whole emission
map for each wavelength consists of the weighted sum of the stellar map, the disk continuum map
and the emission line map within the spectral channel under consideration. The map is then rotated
by the major axis position angle (P.A.), and scaled using thestellar radius (R⋆) and distance (d). The
complete chart of the algorithm is presented in Fig??.

Figure 1: Schematic representation of the kinematic model operation.

The model parameters can be classified into 5 categories:
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1. The global model parameters : size of the simulation in pixels (nx=ny), field of view in stellar
diameter (f ov), number of wavelength (nλ), central wavelength of the emission line (λ0), step
in wavelength (δλ), and spectral resolution (R).

2. The global geometric parameters: stellar radius (R⋆), distance (d), inclination angle (i), and
disk major-axis position angle (PA).

3. The disk continuum parameters: disk FWHM in the continuum (ac), disk continuum flux nor-
malized by the total continuum flux (Fc).

4. The disk emission line parameters: disk FWHM in the line (al) and line equivalent width (EW).

5. The global kinematic parameters: stellar rotational velocity (Vrot), expansion velocity at the
photosphere (V0), terminal velocity (V∞), exponent of the expansion velocity law (γ), and ex-
ponent of the rotational velocity law (β).

The model final product is anx×ny×nλ data-cube saved in fits format and composed of nλ narrow-
bandsnx× ny pixels images.

As it is now widely admitted that the classical Be star equatorial disk are dominated by rotation (i.e.
Vφ >>Vθ), we will only consider in this practical session the case ofrotating disk. Thus all the models
we will run will haveV0=V∞=0.

2.2 Creating your first rotating disk

Let’s compute our first model. First launch IDL (idlde) in a terminal. The procedure that computes
the kinematic-model, i.e.Be disk model, reads the input parameters from an ASCII file. You can find
a prototype of such file at the following path at :$HOME/spectro-interf/paramexample.dat

Open this file using your favorite text editor (Gedit or Emacsfor example). You can see that it contains
all the model parameters defined in the previous section. We are going to use the current parameters
for our first model.

First create adir variable that will contains the path to our working directory :

dir=“$HOME /spectro-interf/”

then aninputfilevariable for the input file:

inputfile=dir + ”param example.dat”

and anoutputfilevariable that will contains the output datacube in fits format :

outputfile=dir + ”datacube.fits”

Finally, to launch our first model we need to type :

Be disk model,inputfile,outputfile=outputfile,outputarray=map,
lam=lam,kinemap=kinemap,lineprofile=lineprofile
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The output datacube will be copied both in theoutputfilefile and in the variablemap. lamwill contain
the output wavelength table of thenλ images,kinemapthe projected velocity map, andlineprofilethe
emission line profile corresponding to this model.

You can check the size and type of each variable using thehelpprocedure. For instance, if you type
help,mapIDL will tell you that map is a 256×256×101 float array, as define in the input file by the
first and third parameters.

To print some variable values, just use theprint procedure. For example typeprint,lam to see the
values of 101 wavelengths for which an intensity map has beencomputed. This wavelength table was
built using thenλ, λ0, andδλ parameters.

Question : Transform the wavelength table into velocity using the previously defined Doppler-
shift equation. What is the maximum Doppler-shift computedby this model?

2.3 Visualizing the outputs

Now that we have computed our first model let’s plot the result. IDL offers two plotting procedures :

• plot, x, yto plot y as a function ofx, according that they are both 1D-arrays of the same size.
Useoplot, x, yto overplot another function on the same plot.

• tvscl, arrayto plot a two-dimensional array, i.e., an image.

After checking that they have the same dimension and size, plot the emission line profile as function
of the wavelength using the plot procedure.

Question : A What is the shape of the line profile ?

Question : Are the min and max wavelengths dominated by continuum or line emission?

Question : Give the wavelengths (the two of them) corresponding to the maximum of emission?
Find the corresponding indexes in thelam array.

Now let’s try to plot some 2D-array using thetvsclprocedure.kinemap, the disk projected-velocity
field, is of this kind. You can plot it directly.

Question : Can you find from kinemap where are the red-shifted, the blue-shifted, and the un-
sifted part of the disk? Explain why!

Unfortunatelymapis a 3D-array (i.e., a data-cube) so we cannot plot it directly usingtvscl. We first
need to extract a 2D-slice from it. To extract the ith xy-image from it do:

mapi=map[*,*,i]

The* symbol tells IDL to extract all elements from a vector. Somapicontains all x and y elements
of map for the i-th value ofλ. We will use this to plot images at different wavelengths inside (and
outside) the emission line from our data-cubemap.

Question : To begin our journey through the line, plot an image that correspond to the contin-
uum emission. What do you see?
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Change the image dynamics by plotting the square-root (usingsqrt function or power operator̂) of
this image.

Question : Do you see something new? Can you explain why the contrast between this two
structures is so high?

Let’s now plot the image corresponding to the center of the emission line.

Question : What is the shape of the disk emission at this wavelength? Is it compatible with what
you deduced from thekinemap plot?

Plot the images corresponding to the maximum of emission in the line, and some images in the wings.

Question : What are their shape?

Finally, we will plot an animation of all the images in our data-cube. To do so, we will execute a loop
using thefor statement on all wavelengths indexes. We’ll used a 0.3 power-law to enhance the image
dynamics:

for i=0,100 do tvscl,map[*,*,i]ˆ 0.3

It might have been a bit fast, you may retype this a few times. Thanks to this animation you can
follow the shape of the emission in all narrow spectral channels through the line.

Question : Where does the most shifted (in wavelength) emissions comes from? Explain this!

Question : What are their extension compared to the one of themaximum of emission?

3 Simulating spectro-interferometric observations

3.1 The simulator of observations

Now it’s time to talk about interferometry. In this section we’ll learn how to extract wavelength-
dependent visibility and differential phase from our model. To do so we’ll use the following procedure
:

simulate obs,outputfile,B=B,angle=angle,visi=visi,phase=phase,lam=lam

The main input of this procedure are the string variableoutputfilecontaining the path of a previously
computed data-cube stored in fits format, an array of baselines lengthsB in meters, and an array of the
same sizeanglefilled with baseline orientations in degrees. The output arethe wavelength dependent
visibility (visi), differential phase (phase) in radians and the wavelength tablelam (equal to the one
that we already got from theBe disk modelprocedure).

Let’s start with two 50 m baselines parallel and perpendicular to the disk major-axis (East-West in our
test model). First defined the arrays for the baseline lengthand orientation :

B=[50,50]
angle=[90,0]
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Then just run the simulator. The outputvisi andphaseare 2D-arrays with a dimension equal to 2×101.
Their first row, i.e.visi[0,*] andphase[0,*], corresponds to the visibility and differential phase for
the first baseline, and their second row, to the same quantities for the second baseline.

3.2 Plotting the outputs : visibility, differential phase, and spectra

Use theplot procedure to plot the first baseline visibility as a functionof the wavelength. Overplot
the second baseline visibility usingoplot. To differentiate the two curves, you can set the line style
and/or color of one of them using keywordslinestyle= with value 0 (solid), 1 (dotted)... andcolor=
(with a value from 0 to 255 with color depending on the alreadyloaded palette). Try :

plot,lam,visi[0,*]
oplot,lam,visi[1,*],linestyle=1,color=230

Question : Compare these two curves. What are their differences? Explain them using your
knowledge about the visibility and remembering the narrow-spectral channels images that you
plotted in Sect. 2.3

Let’s plot the differential phase for the two baselines but in degree instead ofradian. To do so we can
use either the idl variable!DPI=π or !RADEG=180/π. A differential phase is always given between
-180o and+180o. We can specify and x or y range for the plot using the keywordsxrange= and
yrange=. Try :

plot,lam,phase[0,*]*!RADEG,yrange=[-180,180]
oplot,lam,phase[1,*]*!RADEG,color=230

Question : Describe the phase variation through the line forboth baselines? Once again, ex-
plain their di fferences.

You might have noticed that the line profile was computed byBe disk modeland not bysimulateobs.

Question : Can you find the reason why?

3.3 Effect of the baseline length

Here, we will study the effect of baseline length on the spectro-interferometric quantities. Define a
new set of 10 baselines aligned with the major-axis with increasing length :

B=[10,20,30,40,50,60,70,80,90,100]
angle=[90,90,90,90,90,90,90,90,90,90]

The length and orientation could also be written in a much shorter way :

B=findgen(10)*10+10
angle=replicate(90,10)

The functionfindgen(N)returns a N-elements float-vector with values equal the indexes (i.e., 0 to
N-1). Thereplicate(val,N)function also creates a N-elements vector with all values equal toval.

Runsimulateobswith these baselines and plot their visibility. You can useoplot in a loop to avoid
rewriting 9 times the function :
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plot,lam,visi[0,*]
for i=1,9 do oplot,lam,visi[i,*],color=50+20*i

Question : What is the evolution of the visibility with the baseline length in the continuum? And
in the line ? Is that what you expected ?

Now let’s plot all the differential phases with a y-range between -50 and+50 degree.

Question : How does it behave with the baseline length?

The IDL functionmax(array)returns the maximum value ofarray. We can use this function to extract
the phase variation amplitude and plot it as a function of thebaseline length. First we need to define
float array explicitly usingfltarr(N). Then, we have to fill each element of the array with the maximum
phase for a given baseline. We’ll do that with a loop.

phaseampl=fltarr(10)
for i=0,9 do phaseampl[i]=max(phase[i,*])

plot,B,phaseampl

Question : How does the phase behave with the baseline length? I know it’s the same question
that before, but you can now be a bit more quantitative...

Finally, compute and plot the visibility and phase variation for a set of 10 longer baselines( i.e., be-
tween 100 and 200 m).

Question : Are your previous observations still valid? Try to explain why.

3.4 Effect of the baseline orientation

From Sect. 3.2, we already have a hint of the effect of orientation on the qualitative morphology of
the visibility and phase variations. To go further just define a set of baselines with a fixed length of
50 m and orientation going from 0 to 180o with a step of 10o.

Once again (and it’s not the last time) compute and then plot the visibility and differential phase as
the function of the wavelength for this new set of baselines.

Question : What is this effect of the baseline orientation on the interferometric measurements?

Finally, extract the maximum of phase for each baseline and plot it as a function of its orientation.

Question : What function does it look like? You can try to overplot such function if you have
time.

4 Play with the model Parameters

Now we will start changing various model parameters and see their individual effects on the visibility
and phases. To avoid waste of time by typing all the needed IDLcommands (i.e., compute models,
extract and plot visibilities and phases...) again and again, we will use a script that we’ll run each
time we change a parameter value.
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4.1 Simplify your life with scripts

First go to the “File” menu and choose “Open a file”. Choose the “be test1.pro” file in the “home/spectro-
interf/” directory. It opens in the IDL development environment.

You can see that you almost know all commands in this IDL script, except!P.multi which divide a
window into sub-windows for plotting andwindowthat open a new plotting window with axsizeand
ysizespecified. The other commands are just the ones we played withbefore.

Compile the script and launch it using the two corresponding buttons in the upper launch-bar. The
script runs a new model and then computes the visibility and phase for a triplet of 50 m baselines
with orientation 0, 45, and 90o. Finally it plots the visibility for the three baselines in the three upper
sub-windows, and the corresponding differential phases in the three lower sub-windows.

4.2 Let’s go!

Now, every time we will change a parameter, we will have to runthe script again. Here is the series
of parameters that you should test and their corresponding values (you can test other values if you
want). After testing a parameter don’t forget to put back theinitial value given into brackets before
testing the following one.

• Inclination angle (ino): 0, 80, -40 (40)

• Position angle of the major-axis (ino): 0, 45, 135, 180 (90)

• Stellar Radius (in R⊙) : 3, 12 (6)

• Distance (in pc): 50, 300 (150)

• Disk major-axis FWHM in the continuum (in R⋆) : 1, 6 (3)

• Continuum disk flux : 0, 1 (0.5)

• Disk major-axis FWHM in the line (in R⋆) : 5, 20 (10)

• Line equivalent width (in Å) : 5, 20 (10)

• Stellar rotational velocity (in km s−1) : 100, 300, -300 (500)

• Exponent of the rotational law (in km s−1) : -0.3, -0.7 (-0.5)

• Spectral resolution : 5, 10, (1.8)

Question : What are the main effects of each of these parameters on the visibility and phase?
Don’t forget that the effect can depend on the baseline orientation!

5 Fitting real AMBER data

Now that you know the basics of the kinematic-disk model, we will use it to fit real AMBER data
taken in High-Resolution (R= 12000) on a classical Be star.
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5.1 The object :α Col

Our target isα Col (HR 1956, HD 37795) one of the closest (d=80± 2 pc) and brightest (mV=2.6,
mK=2.8) classical Be star. The data that you will use were recorded in January 2010 and were pub-
lished in Meilland et al. (2012, A&A, 538, 110). They consistof two measurements taken using two
different triplets of baselines : A0-G1-K0 and DO-G1-H0.

Here are some information onα Col taken from literature that might be useful for the modeling :

Name distance Teff v sin i Vc pol. angle estim. R⋆ estim. Fdisk

(pc) (K) (km s−1) (km s−1) (deg) (R⊙) (in the K band)
α Col 80±2 12963±203 192±12 355±23 109 5.8 0.25

5.2 Reading and plotting AMBER data under IDL

Let’s look at the data. To read VLTI/AMBER data under IDL we will use a home-made procedure
that will extract all useful information (baselines, visibility, phase...) from AMBER OI-fits file in a
directory. It’s prototype is the following :

amber getall night,datadir,data=data,nobs=nobs

wheredatadir is the AMBER data directory,data is a quite complicated structure array containing
all information (baselines length, orientation, wavelength visibility, differential phase, spectra...) that
will be extracted from the AMBER Oi-fits files andnobsis the number of observations (i.e. files)
found indatadir. To define the path to our AMBER data folder just type :

datadir=dir+”amber /”

The members of thedatastructure are the following:

• nlam: the size of the wavelength table

• lam : the wavelength table (size=nlam)

• nB : the number of baselines (usually equal to 3)

• B : the baseline length (size=nB)

• angle: the baseline orientation (size=nB)

• sqvis: the square visibility (size=nB×nlam)

• sqverr: the square visibility uncertainty (size=nB×nlam)

• phi : the diffferential phase , (size=nB×nlam)

• pherr : the differential phase uncertainty (size=nB×nlam)

• cphi : the closure phase (size=nlam)

• cpherr : its uncertainties (size=nlam)

However, to allow flexibility on the dta format, all “array-type” members are actually pointers to
the array. To access the corresponding array we must use the *operator. As an example, for the
wavelength table for the first observation, just type :

*(data[0].lam)

The corresponding square visibility for the first baseline of this first observation is given by:
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(*(data[0].sqvis))[0,*]

Don’t forget the two pairs of brackets when you want to accessto a specific element in the array!!

You might have noticed that the spectrum is not a member of thedata structure. This is because
AMBER spectrum is not present in the final calibrated Oi-fits file. In this practical session we
will use a spectrum extracted from an uncalibrated AMBER file saved in ASCII format in the file
alpha col final spectrum.spec. We will use the functionReadArrayto read this file and extract a
2×nlam array containing the wavelength table in the first row and thecalibrated flux in the second
one.

Now we can plot the line profile and the visibilities and differential phases for all baselines and all
observations with two loops. Open the file “Betest2.pro” in IDL and look at the code. When you
understand what it does (not before!!), compile it and run it. Note that thexyoutsprocedure is used to
print the baseline length and orientation over the plot.

5.3 Qualitative analysis of the data-set

Before modeling the observations, we should start by a qualitative analysis of the data-set to deter-
mine if we can put some initial constraints on few of the parameters.

Question : Looking at the “V” or “W” shapes of the visibility dr ops in the line, can you deter-
mine the baselines close to the major-axis, minor-axis, andthe intermediate ones?

Question : Consequently, can you roughly determine the diskmajor-axis orientation?

Now, look closer at third and fourth baselines. They roughlyhave the same length (i.e. B≃90 m) and
have very different orientation (-157.9o and -88.9o). They measure the disk extension (in the line and
the continuum) at the same spatial frequency but in different orientations.

Question : Can you tell something about the object inclination angle?

From the table in Sect. 5.1 we know that 25% of the continuum flux comes from the disk and 75%
from the star.

Question : Give the stellar diameter in mas assuming the distance and stellar radius given in
that same table.

The functionudisksimulates a uniform disk. It has four parameters : the visibility V , the wavelength
lam (in µm), the diameterD (in mas), and the baseline lengthB (in m). Given three parameters, this
function will return the value of the fourth one. For example:

V=udisk(lam=2.17,D=2,B=50)

will return the visiblity for a 2 mas uniform disk observed at2.17µm with a 50 m baseline, or :

D=udisk(lam=0.6,V=0.7,B=70)

the uniform-disk equivalent diameter for an object for which we obtain a 0.6 visibility at 0.5µm with
a 70 m baseline.
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Question : Is the stellar surface significantly resolved forour longer baseline?

The functiongdiskis equivalent toudiskbut for a Gaussian disk. The parameterD is replace byfwhm.
for example,

fwhm=gdisk(lam=0.6,B=70 V=0.7)

return the Gaussian-equivalent FWHM for the same parameters.

Question : What is the size of the disk in the continuum (in masand stellar radii)? You need to
know how to compose visibilities for a not fully resolved object!

Question : Can you do the same in the line? Explain the limitations and try to give a roughly
estimate of the disk extension.

5.4 Manual fitting process

Now that we have a few starting constraints on the kinematic-model parameters (from the table in
Sect. 5.1 and our qualitative analysis in Sect. 5.3) we can start running models and comparing their
results with the data. Modify theparamexample.profile using your first guess of the model parame-
ters.

Then, open the scriptbe test3.proand look at it. It is a mix a thebe test1.proandbe test2.proscripts.
It reads the AMBER data, extract all the baselines length and orientation, and put them into two 1D-
arrays,B andangle. It then computes a model using theparamexample.datfile, and simulate the
observations using the extracted baselines length and position angle. Finally observations are plotted
the same way as inbe test2.proand the simulated visibilities and differential phases are overplotted.

Run the script with your first guess of the parameters.

Question : Is the continuum well fitted for all baselines? What about the variations in the line?

With the work done in Sect. 4 you should roughly know what’s the effect of the different parameters
on the visibility and phase. If it’s not already well-fitted,try first to adjust the level of the visibility
continuum by changing the parameters having an effect on it. Then choose the parameters one-by-
one starting with the one having a bigger effect a the visibility, phase and spectra. For example, you
should determine easily the line Equivalent Width by adjusting the line profile.

Question : Now it’s time to find a good set of parameters to fit the data... Good luck!

5.5 BONUS Section : Quantitative “goodness” of the fit withχ2 computation

Fitting the data manually might be funny but it is not efficient and it can introduce human-based
biases. The first step toward the implementation of automatic fitting techniques is to quantitatively
measure our fit quality. The most simple way is to measure the distance between the data and the
model for every measurement and compare it to the uncertainty on the measurement. The most com-
mon operator used for such purpose is theχ2 defined as follow :
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χ2 =

N
∑

i=0

(Di − Mi)
2

σ2
i

(7)

whereN is the number of measurements, andDi and Mi represent the values of the data and the
model, respectively. Theχ2 is usually normalized by the degree of freedom defined by N-L,where
L is the number of free-parameters of our model. A reducedχ2 of 1 roughly means that the mean
departure between the model and the data is 1σ, aχ2 of 4, that the average departure is 2σ, and so on.
On the other handχ2 of less than 1, means that the model fits “too well” the data andthat it has too
many free-parameters.

5.5.1 Step 1 : interpolating the model wavelength-table

Before starting to implement theχ2
r , we first need to interpolate our modeled quantities (visibility,

phase, and spectra) at data wavelengths in order to be able toperform the subtraction betweenDi

and Mi. To achieve this task, we will use the IDL functioninterpol. To interpolate the jth baseline
visibility and phase for the ith observation, type:

visi interp=interpol(visi[i*3 +j,*],lam,*(data[i]).lam)
phaseinterp=interpol(phase[i*3+j,*]*!radeg,lam,*(data[i]).lam)

Note that we convert directly during the interpolation the modeled phase in degree as the observed
one is given in that unit.

Question : How about the line profile? Find the IDL code to interpolate the model one at the
observed wavelength?

You can implements the interpolated visibility, differential phase and spectra in thebe test3.proscript
and over-plot them to check that you didn’t do any mistake.

5.5.2 Step 2 : Estimating uncertainties on the measurements

The second step of the work is to estimate the uncertainties on the measurements. The AMBER Oi-
fits files already contains the errors on the square visibility and differential phase. For the jth baseline
of the ith observation, they are defined the following way :

sqVerr ij=(*(data[i].sqVerr))[*,j]
pherr ij=(*(data[i].pherr))[w,j]

You can extract the uncertainty on the visibility from the square-visibility one and print the average
visibility and phase uncertainties for each baseline.

Question : What are the magnitude of the uncertainties on thevisibility and the differential
phase?

Now look at the plotted data and especially at the noise in thecontinuum.

Question : Do you think that the uncertainties given in the AMBER file are overestimated or
underestimated?
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In fact the uncertainty on the visibility is a composition ofa differential uncertainty between the spec-
tral channels that can roughly be measured using the noise inthe continuum, and an absolute error,
uniform on all spectral channels, mainly introduced by the calibration process. On the other hand, as
the differential phase is a differential quantity, it’s uncertainty is only differential.

Let’s try to compute the uncertainties using the continuum noise. We must first define a range of
indexes in the wavelengths table corresponding to the continuum. This can be done using the IDL
functionwhere:

lam min=2.164e-6
lam max=2.167e-6

w cont=where( *(data[i]).lam lt lam min or *(data[i]).lam gt lam max)

Here, we selected the indexes corresponding toλ <2.164µm orλ >2.167µm, so roughly every wave-
lengths excluding the line itslef. The indices inw may depend on the observationi as the wavelength
tables for the two AMBER files may be different. Hence, put this line of code into thei-loop.

Finally we can now compute theσ on the visibility and differential phase using the IDL function
moment that return an array containing the first 4 moments of the distribution : mean, variance,
skewness, and kurtosis. To getσ type :

mom Vij =moment(sqrt((*(data[i].sqvis))[j,w cont]))
sigma Vij =sqrt(mom Vij[1])

mom phij=moment((*(data[i].phi))[j,w cont])
sigma phij=sqrt(mom phij[1])

Question : Compare the differential uncertainties computed on the continuum noise andthe
one given in the AMBER Oi-fits. Conclude on the level of the absolute visibility uncertainties.

5.5.3 Step 3 : Computing the least-square in the line

First, we need to define the indexes corresponding to wavelengths in the emission line :

w line=where( *(data[i]).lam ge lam min and *(data[i]).lam le lam max)

with lam minandlam maxequal to the one previously defined for the continuum indexesw cont.

We now have everything to compute theχ2 on the visibility and differential phase for the ith observa-
tions and the jth baseline:

chi2vij=total((sqrt((*(data[i].sqV))[w line,j])-visi interp)ˆ2./sigma vijˆ2.)
chi2phij=total((phase interp-(*(data[i].phi))[w line,j])ˆ2./sigma phijˆ2.)

Note that the total function returns the sum of all elements for an array.

The finalχ2
r is the sum of theχ2 on all visibilities and differential phases divided by the number of

measurements (each spectral channel is considered as an independent measurements) minus the num-
ber of free-parameters (i.e. 11). You can load the final script, be test4.proand compile it. The final
χ2

r is printed at the end of the procedure.

Question : What about the closure phase and the spectra? If you still have time (you’re really
fast) modify the script to take into account these two quantities in theχ2 computation
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